Analysis 1, Summer 2023

List 5

Increasing, decreasing, critical points, absolute extremes

- 113. (a) For what value(s) of x does $x^3 18x^2 = 0$?
 - (b) For what value(s) of x does $3x^2 36x = 0$?
 - (c) For what value(s) of x does 6x 36 = 0?

A number c is a **critical point** of f(x) if either f'(c) does not exist or f'(c) = 0. If f'(a) > 0 then f is **increasing** at x = a. If f'(a) < 0 then f is **decreasing** at x = a.

- 114. What are the critical points of $x^3 18x^2$?
- 115. Find all the critical points of $8x^5 57x^4 24x^3 + 9$.
- 116. List all the critical points of the function graphed below (portions of its tangent lines at x = -2, x = 1, x = 3, and x = 6 are shown as dashed lines).

117. Is the function

$$f(x) = x^8 - 6x^3 + 29x - 12$$

increasing, decreasing, or neither when x = -1?

- 118. (a) On what (possibly infinite) interval or intervals is $2x^3 3x^2 12x$ decreasing? (b) On what (possibly infinite) interval or intervals is $2x^3 - 3x^2 - 12x$ increasing?
- 119. List all critical points of $f(x) = \frac{3}{4}x^4 7x^3 + 15x^2$ in the interval [-3, 3].
- 120. For each graph below, is there a critical point at x = 0?

121. The derivative of

$$f(x) = \frac{4x+1}{3x^2-12}$$
 is $f'(x) = \frac{-4x^2-2x-16}{3x^4-24x^2+48}$.

Using this, find all the critical points of f(x).

The derivative of
$$\sin(x)$$
 is $\cos(x)$. The derivative of $\cos(x)$ is $-\sin(x)$. In symbols,
 $\frac{\mathrm{d}}{\mathrm{d}x} [\sin(x)] = \cos(x)$ and $\frac{\mathrm{d}}{\mathrm{d}x} [\cos(x)] = -\sin(x)$.

122. Give the derivative of $5\sin(x) + \frac{2}{3}\cos(x) - x^3 + 9$.

123. Give an equation for the tangent line to $y = \sin(x)$ at $x = \frac{\pi}{3}$.

124. Find all the critical points of

- (a) $f(x) = x^2 \cos(x)$.
- (b) $f(x) = x + 2\cos(x)$.
- (c) $f(x) = 2x + \cos(x)$.
- (d) $f(x) = x^2 + x \sin(x)$.

$$\stackrel{\text{tr}}{\approx}$$
 (e) $f(x) = x^2 + x + \cos(x)$.

To find the absolute extremes of a fn. on a closed, bounded interval:
① Find the critical points of f but ignore critical points outside the interval.
② Compute the value of f at the critical points and the endpoints of the interval.
③ The point(s) from ② with the largest f-value are absolute max, and point(s) with the smallest (i.e., most negative) f-value are absolute min.

125. On the interval [-6, 3], find the absolute extremes of

$$2x^3 - 21x^2 + 60x - 20.$$

126. Find the absolute extremes of

$$x^4 - 4x^3 + 4x^2 - 14$$

on the interval [-3, 3].

- 127. Find the absolute extremes of $x + 2\cos(x)$ with $0 \le x \le 2\pi$.
- 128. Find the absolute minimum and absolute maximum of

$$f(x) = \frac{3}{4}x^4 - 7x^3 + 15x^2$$

with $|x| \leq 3$.

(a) Does the function \$\frac{x-5}{x+2}\$ have an absolute maximum on the interval [-8,4]?
(b) Does the function \$\frac{x-5}{\cos(x)+2}\$ have an absolute maximum on [-8,4]?

130. Give the derivative of each of the following:

- (a) $\frac{1}{2}x^4 + 4\sin(x)$ (b) $2x^2 + 4\cos(x)$ (c) $4x - 4\sin(x)$ (d) $4 - 4\cos(x)$ (e) $4\sin(x)$
- 131. A car drives in a straight line for 10 hours with its position after t hours being $24t^2 2t^3$ kilometers from its initial position. How far away is the farthest point the car reaches in 10 hours, and when does this occur?

Product Rule: (fg)' = fg' + f'g, also written $\frac{d}{dx}[fg] = f\frac{dg}{dx} + \frac{df}{dx}g$.

132. For each function below, state whether its derivative can be found using *only* algebra, the Power Rule, the Constant Multiple Rule, and the Sum Rule. If so, give its derivative.

(a) $4x^2 - 27x$	(d) $(x + \sqrt{7})^2$	(g) $\frac{3x}{2}$
(b) $4x^2 - 27$	(e) 2^{x+7}	6x + 15
(c) $\sqrt{16x}$	(f) $\frac{5}{-}$	(h) $\frac{6x+15}{2}$
$(C) \vee 10x$	$(\cdot) x$	3x

133. Using the Product Rule, give the derivative of $5^x \cdot \sin(x)$.

134. Use the Product Rule (twice) to find the derivative of $x^6 \cdot \cos(x) \cdot 2^x$.

135. True or false?

- (a) (f + g)' = f' + g'(b) $(f \cdot g)' = f' \cdot g'$ (c) $(f \cdot g)' = f'g + fg'$ (d) $\frac{d}{dx}(fg) = f\frac{dg}{dx} + g\frac{df}{dx}$ (e) $(f \cdot g)' = g'f' + gf'$
- (f) (f/g)' = gf' fg'

136. Match the functions (a)-(f) to their derivatives (I)-(VI).