List 5

Increasing, decreasing, critical points, absolute extremes
113. (a) For what value(s) of x does $x^{3}-18 x^{2}=0$?
(b) For what value(s) of x does $3 x^{2}-36 x=0$?
(c) For what value(s) of x does $6 x-36=0$?

A number c is a critical point of $f(x)$ if either $f^{\prime}(c)$ does not exist or $f^{\prime}(c)=0$.
If $f^{\prime}(a)>0$ then f is increasing at $x=a$.
If $f^{\prime}(a)<0$ then f is decreasing at $x=a$.
114. What are the critical points of $x^{3}-18 x^{2}$?
115. Find all the critical points of $8 x^{5}-57 x^{4}-24 x^{3}+9$.
116. List all the critical points of the function graphed below (portions of its tangent lines at $x=-2, x=1, x=3$, and $x=6$ are shown as dashed lines).

117. Is the function

$$
f(x)=x^{8}-6 x^{3}+29 x-12
$$

increasing, decreasing, or neither when $x=-1$?
118. (a) On what (possibly infinite) interval or intervals is $2 x^{3}-3 x^{2}-12 x$ decreasing?
(b) On what (possibly infinite) interval or intervals is $2 x^{3}-3 x^{2}-12 x$ increasing?
119. List all critical points of $f(x)=\frac{3}{4} x^{4}-7 x^{3}+15 x^{2}$ in the interval $[-3,3]$.
120. For each graph below, is there a critical point at $x=0$?
(a)

(b)

(c)

(d)

(e)

(f)

121. The derivative of

$$
f(x)=\frac{4 x+1}{3 x^{2}-12} \quad \text { is } \quad f^{\prime}(x)=\frac{-4 x^{2}-2 x-16}{3 x^{4}-24 x^{2}+48} .
$$

Using this, find all the critical points of $f(x)$.
The derivative of $\sin (x)$ is $\cos (x)$. The derivative of $\cos (x)$ is $-\sin (x)$. In symbols,

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[\sin (x)]=\cos (x) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} x}[\cos (x)]=-\sin (x)
$$

122. Give the derivative of $5 \sin (x)+\frac{2}{3} \cos (x)-x^{3}+9$.
123. Give an equation for the tangent line to $y=\sin (x)$ at $x=\frac{\pi}{3}$.
124. Find all the critical points of
(a) $f(x)=x^{2}-\cos (x)$.
(b) $f(x)=x+2 \cos (x)$.
(c) $f(x)=2 x+\cos (x)$.
(d) $f(x)=x^{2}+x-\sin (x)$.
$\gtrsim(\mathrm{e}) \mathrm{f}(x)=x^{2}+x+\cos (x)$.

To find the absolute extremes of a fn. on a closed, bounded interval:

 (1) Find the critical points of f but ignore critical points outside the interval.(2) Compute the value of f at the critical points and the endpoints of the interval. (3) The point(s) from (2) with the largest f-value are absolute max, and point(s) with the smallest (i.e., most negative) f-value are absolute min.
125. On the interval $[-6,3]$, find the absolute extremes of

$$
2 x^{3}-21 x^{2}+60 x-20
$$

126. Find the absolute extremes of

$$
x^{4}-4 x^{3}+4 x^{2}-14
$$

on the interval $[-3,3]$.
127. Find the absolute extremes of $x+2 \cos (x)$ with $0 \leq x \leq 2 \pi$.
128. Find the absolute minimum and absolute maximum of

$$
f(x)=\frac{3}{4} x^{4}-7 x^{3}+15 x^{2}
$$

with $|x| \leq 3$.
129. (a) Does the function $\frac{x-5}{x+2}$ have an absolute maximum on the interval $[-8,4]$?
(b) Does the function $\frac{x-5}{\cos (x)+2}$ have an absolute maximum on $[-8,4]$?
130. Give the derivative of each of the following:
(a) $\frac{1}{2} x^{4}+4 \sin (x)$
(b) $2 x^{2}+4 \cos (x)$
(c) $4 x-4 \sin (x)$
(d) $4-4 \cos (x)$
(e) $4 \sin (x)$
131. A car drives in a straight line for 10 hours with its position after t hours being $24 t^{2}-2 t^{3}$ kilometers from its initial position. How far away is the farthest point the car reaches in 10 hours, and when does this occur?

Product Rule: $(f g)^{\prime}=f g^{\prime}+f^{\prime} g$, also written $\frac{\mathrm{d}}{\mathrm{d} x}[f g]=f \frac{\mathrm{~d} g}{\mathrm{~d} x}+\frac{\mathrm{d} f}{\mathrm{~d} x} g$.
132. For each function below, state whether its derivative can be found using only algebra, the Power Rule, the Constant Multiple Rule, and the Sum Rule. If so, give its derivative.
(a) $4 x^{2}-27 x$
(d) $(x+\sqrt{7})^{2}$
(g) $\frac{3 x}{6 x+15}$
(b) $4 x^{2}-27$
(e) 2^{x+7}
(c) $\sqrt{16 x}$
(f) $\frac{5}{x}$
(h) $\frac{6 x+15}{3 x}$
133. Using the Product Rule, give the derivative of $5^{x} \cdot \sin (x)$.
134. Use the Product Rule (twice) to find the derivative of $x^{6} \cdot \cos (x) \cdot 2^{x}$.
135. True or false?
(a) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
(b) $(f \cdot g)^{\prime}=f^{\prime} \cdot g^{\prime}$
(c) $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}(f g)=f \frac{\mathrm{~d} g}{\mathrm{~d} x}+g \frac{\mathrm{~d} f}{\mathrm{~d} x}$
(e) $(f \cdot g)^{\prime}=g^{\prime} f^{\prime}+g f^{\prime}$
(f) $(f / g)^{\prime}=g f^{\prime}-f g^{\prime}$
136. Match the functions (a)-(f) to their derivatives (I)-(VI).
(a)

(I)

(b)

(II)

(c)

(III)

(d)

(IV)

(e)

(V)

(f)

(VI)

